Multi-task learning deep neural networks for speech feature denoising

نویسندگان

  • Bin Huang
  • Dengfeng Ke
  • Hao Zheng
  • Bo Xu
  • Yanyan Xu
  • Kaile Su
چکیده

Traditional automatic speech recognition (ASR) systems usually get a sharp performance drop when noise presents in speech. To make a robust ASR, we introduce a new model using the multi-task learning deep neural networks (MTL-DNN) to solve the speech denoising task in feature level. In this model, the networks are initialized by pre-training restricted Boltzmann machines (RBM) and fine-tuned by jointly learning multiple interactive tasks using a shared representation. In multi-task learning, we choose a noisy-clean speech pair fitting task as the primary task and separately explore two constraints as the secondary tasks: phone label and phone cluster. In experiments, the denoised speech is reconstructed by the MTL-DNN using the noisy speech as input and it is respectively evaluated by the DNN-hidden Markov model (HMM) based and the Gaussian Mixture Model (GMM)-HMM based ASR systems. Results show that, using the denoised speech, the word error rate (WER) is respectively reduced by 53.14% and 34.84% compared with baselines. The MTL-DNN model also outperforms the general single-task learning deep neural networks (STL-DNN) model with a performance improvement of 4.93% and 3.88% respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

SNR-Aware Convolutional Neural Network Modeling for Speech Enhancement

This paper proposes a signal-to-noise-ratio (SNR) aware convolutional neural network (CNN) model for speech enhancement (SE). Because the CNN model can deal with local temporal-spectral structures of speech signals, it can effectively disentangle the speech and noise signals given the noisy speech signals. In order to enhance the generalization capability and accuracy, we propose two SNR-aware ...

متن کامل

Bidirectional truncated recurrent neural networks for efficient speech denoising

We propose a bidirectional truncated recurrent neural network architecture for speech denoising. Recent work showed that deep recurrent neural networks perform well at speech denoising tasks and outperform feed forward architectures [1]. However, recurrent neural networks are difficult to train and their simulation does not allow for much parallelization. Given the increasing availability of pa...

متن کامل

Speech Recognition Using Deep Learning Algorithms

Automatic speech recognition, translating of spoken words into text, is still a challenging task due to the high viability in speech signals. Deep learning, sometimes referred as representation learning or unsupervised feature learning, is a new area of machine learning. Deep learning is becoming a mainstream technology for speech recognition and has successfully replaced Gaussian mixtures for ...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015